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NOMENCLATURE

A = (cosh2C - cos2n)

Sa, D = semi-major and semi-minor axes of the
ellipse with F =

2c = interfocal distance of ellipse

ce 2 (n,-q) = Mathieu function of the first kind, of
the order of 2, defined by Equation (Al.6)

E = Young's modulus

e = eccertricity of ellipse

Fek 2 = Fek2(,-q) = k-type modified Mathieu function of the
second kind, of the order of 2, which is
defined by Equation (A1.4)

(Fek 2 )' = 7[Fek 2U(,-q)]

(Fek 2 )= .- [Fek

F F/(c/2)2

H,B,CD,E,F,M = superposition constants

hl,h2 = scale factors

I n(z),K n(z) = modified Bessel functions of the first andsecond kinds, respectively, where n de-

notes order

U = the Jacobian of transformation

k ql/ 2  1 ck= =T 2T

£ = couple-stress characteristic length

M M- 7
(P2)'

p - uniaxial uniform load

i (2)(p2 ' ce2(0,q) co 2 , q)/;

(P2)' 2 2



,,J.rl c 2 2.2q 2 TI k2  Here q is the real posi-

l=ive -hum!-er

r,r' = semi-major and semi-minor axes of any
ellipse

Sr= polar coordinates

se 2 = 2(n,-q) = Mathieu function of th3 first kind, of the
order of 2, which is defined by Equat.ion
(Ai.5)

(se 2 )' T [se 2 (n,-q)
S~22

(se 2 )' - [se(-q)

U = Airy stress function

x,y = Cartesian coordinates

aa = orthogonal curvilinear coordinates

F = defined by Equation (3.35)

A = defined by Equation (AIII.17)

0 = the inclination of the curve 8 = a constant
to the x-axis in orthogonal curvilinear
cooidinates (c,8)

= modulus of rigidity

IxJI y = couple-stress compc ients in Cartesian
coordinates

= couple-stress components in orthogonal
curvilinear coordinates

pp = couple-stress components in elliptical
coordinates

v = Poisson's ratio

V 1 = ke-•

V2  = keE

ý',l = elliptical coordinates

axx a xy. ayy, ayy = stress components in Cartesian coordinates

iv



Sa ,oa ,~a ,oB = stress ccmponents in orthogonal curvi-
linear coordinates

a roarata stress components in elliptical coordi-
STin nates

-P = couple-stress function

*z = Jocal rigid rotation

v
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1.0 INTRODUCTION

1.1 Objective of Research

The objective of this research is to obtain solutions

for an infinite tension p. .ate bounded at the interior by an

elliptical hole. The nominal tension in the plate is uniform

along the majo. axis (see Fig. 1). The couple-stress effect

is considered. Two limiting cases for the problem are for

the ellipticity of 0 and 1 for the interior bo'undaiy. That

is, for the first case the interior boundary is a circle, for

the second case, a crack along the major axis. Of course, the

problem of a crack is the major interest of the research. The

present investigation includeF a study of a class of solutions

which satisfies the static equilibrating traction on the

interior boundary. y

i n=iT T x

I=

c cosh &o=a

c sinh ýo=b
ce = -a

Figure 1.
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1.2. Review of Pertinent Literature

The origin of couple-stress theory of elasticity is

attributed to E. and F. Cosserat, with modern developments by

Truesdell, Toupin, Grioli, and Aero and Kuvshinskii. A dis-

cussion of the origin and development of the coupl.e-stress

theory is given by Mindlin and Tiersten [1].

Recently, specific plane problems in couple-stress elas-

ticity have been studied by many investigators. The following

is a list of those studies which are related to the nresent
/

problem. Mindlin [2] found the couple-stress effects on the

stress concentration factors for a circular i ole ii 7arious

two-dimensional fields of stress when thzj cliam-t,.t of the hole

is comparable in size to the couple-stress ccistant Z.

Weitsman [3], [41 generalized the solution to the cases of ]'l-

indrical inclusion in fields of cylindrical symmetric. end :nl-

axial tension, respectively. Sternberg [51, [6] fourd the

effect of couple-stresses on the stress concentration .,roand a

crack bý assutting that the stress singularitizF at the crac_-

tips are cf the same order as those in the we]ll-known classi-

cal solutions. An earlier report by Ju and Hsu [7] (AFO0T-69-

1908 TR) contains a comprehensive review of the theory and the

basic eqaations for the plane problems. All pertinent nota-

tions and definitions, therefore, will be referred to [7] to

avoid repetition.



2.0 TWO-DIMENSIONAL COUPLE-STRESS THEORY

The approach toward the solution of a crack problem may

be either by means of the degeneration of an elliptical hole

(7] or by the use of a half-plane [5]. The choice of using an

elliptical hole has the advantages of (a) no a priori assump-

tion, (b) ready check for the problem of a circular hole [2],

(c) ready check for the classical solution [8]. In order that

the boundary may be described by a coordinate line, the ellip-

tical coordinate is used. Hence, all equations for the

co),ple-stress theory of elasticity are expressed in such co-

ordinates in this problem.

2.1. Rectangular Cartesian Coordinates

According to Ju and Hsu [71* or Mindlin [2], the field

equations of two-dimensional couple-stress theory in a state

of plane strain without body forces or body couples are given

as follows:

U and IF must satisfy

V4 U = 0 (2.1)

and

2 - £2( 2 = 0 (2.2)

respectively, where k is the couple-stress characteristic

length so that £2 is the ratio of the Cosserat modulus to the

Numbers in brackets designate references at end of the
report. Equations in Section 2.1 refer to Equations (1.40)
through (1.51) in [7].

3



modulus of rigidity (p) [7]. U and T must also be related to

each other by the Cauchy-Riemann equations

-( = -2(1 - 2)t (V U)

(2.3)

a ( T' - ZP V 2 T ) 2 l -v ) Z 2 ( U )

Stresses, couple-stresses, displacements, and rigid-body rota-

tion are expressed in terms of the two generating stress func-

tions U and T as follows:

32U 2 2

xx _-Ty- Way

a2 U 2yd2u •2'

0yy 3x2 axay

S9
0 -

xy 3x5y y2
C',

(2A4)

2 U 2Y
Cyx Txay 7x2

x =x

y a-

2.2. Orthogonal Curvilinear Coordinates

To generalize the results [2], [7] which are derived fnr

rectangular Cartesian and polar coordinates, consider those

4
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for the general two-dimensional orthogonal curvilinear :o-

ordinates (a,8). The two generating stress functions U(a,o)

and T(a,8) must satisfy (2.1)* and (2.2), respectively. Here

2 4the Laplacian operator, V , and the biharmonic operators, V4,

are expressed in terms of orthogonal curvilinear coordinates

a and 5.

12 hl2 ( ýh aa h hh 2 )
and (2.5)

V4 =2 V2

where h1 and h 2 are scale factors in a and 8, respectively.

The Cauchy-Riemann equations (2.3) can be transformed to a

and 6 coordinates by use of the chain rule that

a D ata + a
a x a73 ax aa

(2.6)

-2 -

3y ay 3a 7y 5a

The stresses, couple-stresses, displacements, and rigid-body

rotation are expressed in terms of U and T as follows:

Numbers in paientheses are refeiences to equations in
the text.



2 2 h 2 Dh2 -C ÷ -_TG a h 2 - 2 - a - -2 -W + h -h h

•h hI DT h h2 aty-1h2 aa 1 h 3aI2
2a2 U, 2 3h2h 2 = h +•h aU 2 1 U + h-h2 a2h

1 a- h c act 1 2 ata5•

ýh 1DT ah2 @T+ h - -+ h1
2 @a 3 a -± 1 3

2 ahiau 2.

S•U 1h ýU h2 ýU
o -h h -h-h 2 ia• h a hl

(2.7)
h 2 32T 4 1 2 T •h2 1

2 h 2 h• 2  a h2 38 ýa

-h 2U ah 1U h h2 3U

= 1h h 2 a---•-2 as ac 1 hl 3

2a2  ahi, h 2h 1 A
+ h 2 + h, I-@ - 2 h 1 • as

1a 7= Da 3a h aa

' • = h2 ~
has

2.3. Elliptical Coordinates

The elliptical coordinates • and r (see Fig. 2) are re-

lated to the rectangular cartesian coordinates x and y by

6



x = c coshC cosn
(0 < r < -, 0 < n < 21) (2.8)

y = c sinhE sinn
L

S•=] =600

Figure 2.

Here the curves • = constant and ri = constant form an orthog-

onal system of confocal ellipses and hyperbolas, with the com-

mon foci being the points (±c,0. Figure 3 shows two limiting

caises when the ellipt~city e is 1 and 0, respectively.

The Jacobian of transformation is

dx •x

j (x= = = c2 (cosh2 • cos 2n

At • = 0, n = 0 or TT, J = 0. Hence the only si.ngular points

n=0

n=70
Her the curvesforatonstant loated at cosath form a+n0 othog

scalTe factorshiand of transformationte is

x ax



1 ax2 + y 2

h E~

and

1 •2 21 ax + ýY

h nan
as

h =h = (_ (2.9)
qvEco.24 - cos2rl

This denotes that

A = (cosh2; - cos2n) (2.1q)

y

mi ~ x
0

e= 1 e=

(a) (b)

Figure 3.

The following quantities involving h and h are

8
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Dh Dh=-

n -= - sinh2

ah • h 3
h = - 2 A- 2 sin2nc

2 2 h 2 2h• hA
c

(2.11)

- h,2 -2( A 2 ~
(213

Vn c

hE h- = hn A -2 sinh29
h ~ c2

•h• ah h hn 2 A- 2 sn

c

Equation (2.5) becomes, by use of (2.9) and (2.10),

(2.12)

v 4U = v2 U

S~The Cauchy-Riemann equations (2.3) can be transformed to

S~elliptical coordinates and by use of (2.6) with a •

• (2.13)

(T P, (v _Y2 ) 2 2(1 v) 2 k Iv2U)

9
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Similarly, stresses, couple-stresses, displacements, and

rigid-body rotation are expressed in terms of elliptical

coordinates by use of (2.7) and (2.11).

(214

2 A-1 a2 U 2 A-2 sinh2ý 3U 2 A-2 n U

On2 =-2 C2 7 a •Cs nq

c an c c

2215

2 a-I 22 2 -2 ý'U 2 -2 0A + -7 A sin2n- + A sinh2-

aEan a& --2 3n,,n

c c
(2.14)

2 u-I 2 2 -2 s in2 -2 dU+ ' -A sinh2& ý +2 L A sin2,,
) c C

22 - 2 -2 2 2 -2.
2 - -i A sin2c -2 A 2-h

C C C
12.15)

2 A-ld 2U +2 A-2 si~ U +2 A-2 sih2 !

2 -1 - 2~ A 2 A- A sinh2& DT~ + -L A -2sinh2,

() A 2 2 ý 2n 9

C c C C
2o-2 A 8 U + 2 A- 2  d'1 2 L -2 sinh2C ý-

C dl C C

22a

A-sinh2ý + _L A sinh2,

L222 Al' 2 -2 (221-2

A2) 2 2 Sn2-A--- (i2.19)-

11



Components of stress and couple-stress in elliptical coordi-

nates are shown in Fig. 4.

y

Direction of
n-incr7,ing

,Direction of
a 4 -increasing

a
nn n

I x

Figure 4.

2.4. Boundary Values of the Problem

The couple-stress solutions are obtained for the uniform

tension plate bounded at the interior by an elliptical hole.

The nominal tension p is parallel to the major axis. For the

present general class of problems, the boundary conditions at

the elliptical hole are

f a J•= 1 (r)dn = 0 (2.20)

0 n=n

i 11



ffa En W2 (r)dr = 0 (2.21)

I n=rl

(,2.r l 2(i.n = 0( 
. 2

where* w1 (n) and w2 (n) are some weiqhting functions defined on

the interior boundary.

The regularity conditions at infinity are

a- =p,a0 =a0 =GaO = Um = 0 (2.23)Syy xx xy yx y

wi(n) = ce 2 (n,-q) and w2 (n) = se 2 (n,-q)

12



3.0 SOLUTION OF THE PROBLEM

3.1. Selection of Stress Functions U(E,n) and T(E,n)

As U(l,n) is biharmonic in (2.1), with V2 taking the

form of (2.12), we choose five solutions of U(R,n)

U1 = e + cos2n

U 2 e + cos2n

U3 =e -2 cos2n (3.1)

U 4

U5 =e cos2n

The selection of these fundamental biharmonic functions is

based on the same argument as that used by Filon and Coker [8].

Notice that (2.2) can be rewritten as

V -( X2V2VT) = 0 (3.2)

and

2 2 2(i Z V2)V = 0 (3.3)

From (3.2), we obtain the wave-function solution as the

products of two types of Mathieu function (see Appendix I).

Here we choose

T2 = (Fek 2 ) (se 2 ) (3.4)

13



Equation (3.3) implies that one solution of T is harmonic, Ti"

.t L.hermore, Cauchy-Riamann equations (2.13) conclude that

this harmonic T anO 2(1 - v)2 V 2U must be conjugate harmonic

functions [2] [7]. As such, T is selected with U in (3.1),

as

T sin2n (3.5)

1 = (cosh2ý - cos2n)

t Finally, U and T are formulated by a superposition of stress

[ functions given in (3.1), (3.4), and (3.5).

U =HI1 + BU + CU + DU + EU (3.6)

'V1 2 3 D 4 + 5

T FI1 + MT2 (3.71
1 2

3.2. General Expressions of Stresses and Couple-Stresses

Define , i, aCF , if , a and u.1 equivalent

ii
to U= for i Bo1,2,3,4, and 5 and T for i=6 and 7. Thus

1 (i-5)

we have

= HO + Ba + Cc + Do + Ea + Fa + Ma
""1 n2 3 4 5 6 nn7

=nn Ha in + Ba nn +Cc r + Do + Ea n + Fa n + Ma n n7

a =Ha + Ba~l +Cc +DaE + EaE + Fa + Ma

En 1 2 3 En4  E° 5  Fn 6  Mn 7

14
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HI + BUi + Cp3 + DU & + EU + Fp + MP7

1 2 3 4+E&5 &6 -7~i
(3.8)

P HP H r, 1 + Bp n2 + CP n3 + D U4 + Epl5 + FP n6 + Mli7

Some important quantities are calculated by the use of (2.14)

to (2.19), and by the use of (2.12) equivalent to U. for
1

i = I to 5 and T1IT2 The results are listed as follows

(however, some of them, which are independent of couple-

stress, have been worked out in Filon and Coker [81*).

a•1 A-• A-1[2 cos4n - 8 cos2n cosh2 + 4 + 2e]

c

a nA [2 csn 8 (cos2n) e2 + 4 + 2eE I

S-2[4 sin2n cosh2E]

SU.1=Un=0 (3.9)

V 2 UI A-I [e 2ý cos2n]
1

S"~V -- A [e - cos2n]csh•

C

= 16 -
~W- 1, [sin2ri sinh2&]

c

See Equations 16.235) to (6.2363) and (6.2421) to

(6.2423) on pp. 541 an. A43, respectively.

15



For U2 , we have

CF2 c•1 A 2 [2 cos4n -8 cos2n cosh2ý + 4 + 2e-4,

S1 A-2 -2 -4

2= 1-2- [2 cos4n - 8 cos2re 2• + 4 + 2e 4 •]

S-I

=1 A-2
I = n -A [-4 sin2n cosh2E)

2 • =n&2 c 2

UT, 0 (3.10)

~~ -2U2 A 1I [-2r
2 =e - cos2rj]

_ 2 216 -2
- 2 A- sin2n sinh2E

an 2 16 -2
a --- [1 - cos2n cosh2E]

For U3 , we have

2 A-2 [cos4n e-2C - cos2n(e- + 3) + 3e-2]
3 c

2 -2 -2ý -2E[A -cos4n e - 3e + cos2n(e 4 + 3)]°n3 c

2 -2 . -2ý4
a~ CY = A [sin4n e sin2Ti(e ] (3.11)

En33 na3 2 2

p p4 V2U _V2 =IV T 2,j=0
&3 n3

16



For U4 , we have

A [2 sinh2C]IC4 c2

1 -2
A j-- [-2 sinh2t]

(3.12)

= = 1 A- 2 [sin2n]

4 4  4

= = 2U4-• V2U4 D V2U4

CJ4 11rn4 V n 4 3

For U5 , we have

o1 A -2 [2 cos4n e2E cos2n(2e 4 ý + 6) + 6e 2C

1 -2
A [-2 cos4 " e + cos2n(2e 4 • -. 6) - 6e 2 ]

(3.13)
= =1 A-2 2E 4

En5 = , = c 2  [-2 sin4n * e + sin2n(2e 4 • + 6)]

2 u= U5 =an 5 a& 5u5 n5

For I', we have

= • - in2[ + sin2 2~n - cos2n cosh2•]
12 -4 2

A = sinh2[l + sin22 - cos2n cosh2E]

6 c

17



a C _ 12 A-4 sin2n [sinh 22E -1
E q n 6  c 2

+ cos2n cosh2U]

2v'2--5/2
n - -A [1l- cos2n cosh2E)

(3.14)

2- 2 A 5/2 [i~ ih

q' A~' [sA~ sinhM

V 2T 1) 0 l

a ~22 -2
(T~ 1 - 2A (sin2n sinh2&]

For T 21 we have

a 2 [-P.(Fek)' (se) + (Fek) '(se) sin2n
E7 c 2A22 22 2

+- (Fek 2 )(sinh2E) (se 2 ) '

a 2----[--A(Fek) (se) (e (s sii2nnn 22  2) 2) + Fe 2)' ( 2) f

+ (Fek 2 (sinh2ý) (se 2) 'I



n7 c2A2 [-Al2ek 2 ) (se2) - (sinh2M) (Fek 2 ) (se 2)

+ (vek 2 ) (se 2 ) sin2n]

(3.15)

_ 2
n 2A2~-[A(Fek 2)''(se 2 ) - (sinh2C) (Fek 2 )' (se 2 )

+ (Fek 2 ) (se 2 )' sin2n]

112 1/2IA 7 = l11 (Fek 2 )'(se 2)

= i12) (FeK2 ) (se 2 )

227 c A 22 )

T2 z 222 = " (2 T ;(, 2V2 2)
2 2 3r' ' 2)

( 2 22
- £ , 2) = 0

Substituting the expre,;sions in (3.9) to (3.15) into

(2.14) to (2.19), the results are as follows:

2 e4E

a = c 2 {H[cos4n - 4 cos2n cosh2ý + 2 r e I

+ B[cos4r - 4 cos21] • e-2C + 2 + e- 4]

+ C[cos4n e- 2 C - cos2(e -4ý + 3) + 3e-2ý]

+ D[sinh2E] +

19



+ E[cos4n e 2 - cos2n (e 4 E + 3) + 3e 2E I

-1 2
- [ý sinh2ý(1 + sin 2n - cos2n cosh20)I

A

L ff ~~~~M[-A%'Fek )'(se )' + Fk)sesin

+ (Fek )sinh2E(se 2)1~.6

n2 22

+ BH[cos4fl - 4 cos2rie 2E + 2 + e 4 E

- C~icos4n e- + 3e- 2 ý _ cos2n (e 4 + 3]

- DI~sinh2EI

- Efcos4n * 2 + 3e 2 c - cos2n(e 4 ý + 3)]

6 2
+ F-sinh2ý(l + sin 2YI. cos2Tn cosh2E)l

A2

-M[-A(Fek 2)' (se 2 ) + (Fek 2 ) (se 2)sin2n

+ (Fek 2 sinh2ý(se 2 )'11} (3. 17)

-2 (2k,! - B) [sin2n cosh2UA

2EA4

+ C~s.ln4n - e sin211e 4  + 3)]

+ D~sin2r)]



-E[sin4n e e2•- sin2nr(e 4 E + 3)]

6_,-, 2ini 1=n - :• cos21; cosh2ý)]

+ (Fek 2 )(se2)' sin2n]} (3.18)

2 ~
0 Or + 2 M[A(Fek 2 )"(se2 ) + A(Fek2 ) (se 2 )"] (3.19)

2 22. -2 -A"1-2'[ - sjn2•) sinh2F] + M[A (Fek 2 )' (se 2 )]1 (3.20)
cA

/ f {-2F[l - cos2,i cosh2e] + M[A 2 (Fek 2 ) (se 2)'} (3.21)YJrl cA- 5/22

The .even unknown coef Ji(;:ont• '7, , , , C 7, and M in

(3.15) to (3.21) will be determined by using boundary condi-

tions* at C = 0 Cauchy..Riemann equations, and regularity

conditions at ¢ in Sections 3.3 through 3.5.

3.3. Determination of H, E, and D

Since the plane is subjected to uniform tension, p,

I.arallel to the axis of x at infinity (see Fig. 1), the regu-

larity condition (2.23) is then sacisfied at infinity. This

can also be expressed in terms of stress function as

See Equations (2.20) through (2.22).
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2 2 2 2 C2 2 2
U E~=C sinh sin n=2P(e + -2 2)(1- s2n)

Since at E - -, both e- and 2 can be neglected compared w:th

e 2, U becomes at

P22E2 2EU = pc- e PC e cos2n (3.22)
16 16

From (3.1) and (".4) through (3.7), U becomes at E ÷

2E 2
U = He +Ee' cos2n (3.23)

Comparing (3.22) with (3.23), w,! get

2
H PC p(3.24)

16

2
E = - (3.25)16

Notice that D is the coefficient of U4 . Since U4 is inde-

penaent of couple-stress effects, D is assumed to be in the

same form as one obtained in the classical case [8], namely,

2
D= -P (cosh2 0 - 1) (3.26)

3.4. Determination of the Relation Between B, F, and p by

Use of Cauchy-Riemann EguationL (2.13)

Using the expressions in (3.9) through (3.15) together

with (3.6) and (3.7), we have

See Equation (6.2495) on p. 544.
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V2 U = HV2 U1 + BV2 U2 (3.27)

S- k2 -2T = F (TY - £ 2 V2 yI) - F' 1 (3.28)

By direct substitution of (3.27) and (3.28) into (2.13), the

Cauchy-Riemann equations read

'1 2 (2 V2Ui F �--=2(1 - V)k [HL(V2 U) + Ba(V2U2 )] (3.29)

2(1~ ~ an ~2 2 (.0

: F ? - 2(l - OZ)2[H-.(V U1) + B- (V U2 )] (3.30)

Using the results obtained in (3.9), (3.10), (3.14), and

(3.24), either (3.29) or (3.30) leads to the same expression

2F £2 16-= (1 - v) (k - p) (3.31)

c c

or

2 2B: Fc2D
B 61 - 2 + c(3.32)
16(1 - v)Z 1

3.5. Determination of C, F, and M

The traction conditions on the interior boundary will

now be used. On the boundary, • = and n varies within the

limit (0,2n).

a. Couple-stress l. On the boundary, expression

(3.20) becomes
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'•(•orj cA_/2-2F sinh2O sin2n + M[(Fek2 )'].

~0 0A 2 C,00

I 1 + cos 2 24o) (se 2 ) - (2 cosh2•O) (se 2 ) (3.33

* cos2r + ½(se2 ) cos4n]

The boundary condition (2.22) is now applied by multiplying

(3.33) on both sides with se 2 , and by integrating the result-

ing expression with respect to n through the range (0,2fT).

The following expression results with the use of equations

developed in Appendix II (AII.I) at n = 2, (AII.4) and

(AII.5) at n = 0, p = 1,2.

M =' 2FF (3.34)

where

1' = B• 2 ) sinh2o /i[(Fek2) ' ( 1 +cosh 2 2o)
2 0osh2 o) + •s 2E 0

+(2 cosh2ý) E B (2 ) B (2 ) ý B (2) (3.35)
0 _ 2r+2 2r+4 'T 0 2r+2

S(2) 1 (1 2)) 2
2r+ 2

b. G~n on the boundary. After (3.18) is evaluated on

the boundary, further reduction is introduced by the use of

(3.24), (3.25), (3.26), and (3.32).
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[K ] = l [( T + Cosh22 0) _ • 2 (cosh2Eo) + 3•3 sin2T)

+ [-yl(cosh2Ao) + 421 + csh22E) + sin4

II•
+ 2 sh2• lsin6n + 2

- 2 al [-1sin8Ti

-[5(2 + cosh 2 2&o)cosh2y0 (se 2 )"

Scosh22• 3
+ [K5 (3 cash 2)] (se 2 )' cos2n

(3.36)
3 ;5

[ 5(5 cosh2 o)] (se 2)" cos4n -r [-](se2)" cos6n

- [ 6 (½4 + cosh 2o)2 (se 2 ) + [6(2 cosh2•a)]-

-(se 2 ) cos2n

L (se2) cos4 [( + cosh•2• (se) ' sin2n

- [. 7 (cosh2o))I (se 2' ' sin4n + [f-I (se 2 ) ' sin6n

where K is a constant and

c 0-4

I(1 - )Z2 F cosh2 ° -C(e + 3)

I -(cosh2o - 1)- 2 4 0 + 3
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-2t° 0 e22C

ý2 -- Ce + %

ý3 = 6Fl(sinh 2& 0 - 11

44 = 3F(cosh2to)
0

i • 5 = 2Fr (Fek2 ) =.o

0

= 2Fr[(Fek 2 )']•• sinh2•°

C7 = 2Fr(Fek 2 )•=•
0

The boundary condition (2.21) is used by multiplying (3.36)

on both sides with se 2 and by integrating with respect to n

from 0 to 27. Further simplification is achieved by using

(AII.1) with n = 2,4,6,8; (AII.4) and (AII.5) with n = 0,

p = 1,2; (AII.6) with n = 0, p = 1,2,3; and (AII.7) with

n = 0, p = 1,2,3. All algebraic manipulations are routine

but cumbersome, thus omitted. The resulting expression is

bC + gF m (3.37)

where

b = {(e0 + 3) (1 cosh 22 + e cosh2-FB

51 H[(e + 3)(cosh2&o) + e ½ + cosh 22 o)] B(2)

26



-[(e-4' + 3) + e °cosl12olB(2)0 is 6 1 B8 f G(2) 3.33)
g = -81 u-2

SI 8 ( 1 - V 12 -23 cosh2° -2 1

+ { [[(c loek2I)•=o [(l + cosh22•o ) co4snh2 2%o].~ ~

- _ ~2r + 3) CahF•]]2
cosh 2 r 2 2osh2 2

2 [0- + 3 {2F2r) B 0 B)(22)

0 =2r-2 2r+3%

(3.39)
+ [. cosh2r+] 22(B 2)) 2

+ 3 ( 2r + 5)2 B12 ) B12 )
r=4 2r+2 2r+6

_ [()2 2 1'2B)2  BI2' 1
r=O 2r+2 2r+8j

27

13 23(2 ) B 2  I

+-[-(2r+co5) 2r+2 B2r+6'

r--

+ -9B B+ 2 R 7 B 21  B (2) B[cs2][ 2r+ 2rr22r

4 r=OJ r= 2r+2 2r+4]
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M )cMe0+ 4 cosh2E0 - 1) cosh2 A

+ e coshJo] B2
4o2

+ [(e ÷ 4 cosh2t° - 1) cosh2C0

(3.40)

+ e20(1 + cosh2 2ýO)]B42 )

1~~ ~ 4[o2oB2

+ [1(e0 + 4 cosh2Eo - 1) + e 0 ccsh2CB( 2 )

T 8

c. _o• on the boundary. Equation (3.16) is evaluated

first on the boundary. The following expression results with

the substitution of Equations (3.24.'?, (3.25), (3.26), and

(3.32).

[K'ac I - + Y2 c sh2o 3 + co4h 2 1

0

S( os 2 2• 3
+ [-Y, cosh2Eo (cosh 2Y2 +-)

0 20 4

- Y3 (2 cosh2EO) + y6] cos2n

+ [yl( + cosh 2 2ý ) + Y2 (cosh2o0 )

Y
3+ -r + Y5 cos4n
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rTP - - - --7-

+ [-Y1 cosh2Co - oo. + 1 1 cos58

- [y7(7 + cosh 2 C o) ',osh2to

(3.41)
17

- Y9 (f + Cosh 2E 0 (se 2)'

2 3+ [y7 (3 cosh 2o ÷ +

- Y9 (2 cosh2Col (se 2 )' cos2n

•9- (3y7  cosh2) -i:1 (se 2 )' cos4n

7. 0os2)'

"Y7
+ T--(se2 )' cos6n

cs2
+ [Y8  + cosh22& 0 (se 2) sin2n

-[Y8 eoh2o s2) sin4n + [ 4-•se) s-in6n =0

where K' is a constant and

2 2 p2 -2Fo
y = (2 -e 0) + c + Ce

16(1 - v)l

2 Fc 2  cosh2° + F (8 cosh2&o e 0 3)

S4(1 - v)2' 
0

-4•o
+ (e 0+ 3)C

F 29
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2 -4C2 4C -4C~
=3 Fc2  .(2 + e 0 ) + 4+ e 4 O +e 0

16(1 - v)l-

-3e + 3Ce + D cinh2C0a

y4 = 9F sinh240

Y5 = 3F sinh2E0

6 = 3F sinh4Eo

Y7 2rF[(Fek2) ']E=E_

8= 2rF[(Fek2 )']•=
0

Y9= 2rF(Fek 2 )=o sinh2 0
0

The boundary corlition (2.20) is applied with the multiplica-

tion of (3.41) by ce 2 , then by integrating the resulting

expression with respect to n from 0 to 2n. By using (AII.2)

and (AII.3) with = 2, 4, 6, 8; (AII.8) with n = 0, p = 1,2,3;

and (AII.9) with = 0, p = 1,2,3, the final expression re-

sults in

KcC + sF = t (3.42)

where
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-20 + (2e 0 + 6) cosh2o + 6es cosh022 A ( 2 )

- [7e 0 cosh2co

+ (e-4° + 3) • (cosh 2 + 3)]A (2  (3.43)
0 2 2

[2e-2C° + e cosh 2 2 o + (e 0 + 3) cosh2o]A( 2 )

-2E 
2ý) E[e 0 cosh2. + 4(e + 3)A - e(2

2o 46 4 8

1)£2{ 8 cosh[ 2  + (2 + e (1+ 2 cosh 2 2E

-(18 sinh2( 16(1 - v)i 2u]A(2)
2 o

3 cosh2 2•-[cosh2•o + 4(cosh2ýo( + cs E

+ (2 + e )(2 cosh2o)
2

(3 sinh4M )(16(l - V) ]A (2
S2

(I +cosh 2E ) + 4 cosh 2, + (1 + -e
2 0 0 2

i 2e
+ (3 sinh2o 16(l - v)z2 HA(2)

0 " 2 )S~c
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[2 cosh2r 8A() )()

2{'[(21 - cosh 2F o) (s3nh2o )(Fek

- + cosh 22 o) (Fek 2 ) _ cosh2 oJ

S(2r + 2)A(2 B()
(2r .2r+2 2r+2,

+ [2(cosh2Co) (sinh2Co) (Fek 2 ) ••

2 3(2) (2)(3 cosh 2C +HFek 2 ) [ B

Sr=01 3-

2[A 2)B 2) + 2A0 4 (2) (2) 2 + 2) (2) +(2)}
2 2 0 4 -2r+4 Z 2 r + 2

3 I7A•2)B( 2 ) + 2A ( + (2r (+2)+ 2r(Fek9 ![A +B 2
0

(2)~ (2)
+ 3A 2 B~2  + (2r + 2)A' B0 6 2rZ 2r+8 2r+23r=2

S~32



+ 1+cosh 2  r 0 (2) B(2) A~ (2)I2B r2)2410 2 2 2r+2]

2 or=0 r= 0

1 , . 2 () • A2) B ý(2) ((244+4 os2 E A~2  (~2 ) B A~ BB~]}

+ O '-2r+8 2r+2 2 2r42

2r 2r6

!= r== r=

{pc2),2 4 (e2EO 4Eo

16- (3 + e - 8 cosh2e 8 (oh cosh2

2Eo -2Eo -4+ (e 0+ 2e 0- 2e 0- 4)(1 + 2 coh2 ]A°(2

+ [(-3e -ý 4e-20 + 4e-40 + 10) cosh2E 0

- (3 + e 4E - 8 cosh2EO (cosh 22Eo + 2.)]A(2)

- [(2 cosh2%o - e - 3) + (e 0 + 3)cosh2E°

+ (e2 0 - 0) cosh 2E ]A(2) [e o cosh2O + +

-4 cosh2 ]AA 62  "(e - 2)A 8 (3.45)

Equations (3.37) and (3.42) form two linear nonhomogene-

ous equations with two unknowns, C and F. They can readily be

solved by using Cramer's rule
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I

-=s - gt (3.46)

bt - gK

SF = bt-FK(3.47)
Fbs GK

provided (bs - gK) = 0.

The stresses and couple-stresses of this problem are the

general expressions in (3.16) through (3.21), together with

the seven determined coefficients in (3.24) through (3.26),

(3.32), (3.34), (3.46), and (3.47).

- 3
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4.0 SPECIAL CASES OF THE SOLUTION

4.1. Infinite Plane with a Circular Hole Under Simple Uniform
Tension in the Presence of Couple-Stress (Fig. 5)

y

free --s

E 'k

S~e -o, a=b=a

Figure 5.

Rewrite (3.6) and (3.7) as

H 2U2 U3U (c U + (B)(U 2 ) + (C C) --.

C c

(4.1)

+ (D) (U4) + E (c 2 U
45

C

S= (F) - + (M) (p 2 ), 2 (4.2)
2 3

S~2

S~35



3olution of this specific problem can be obtained by use of the

.Limiting process described in Appendix III-(a). Equations (4.1)

and (4.2) are simplified and reduced, by use of the forms in

(AIII.6) and (AIII.7) and the basic theorem on limits

2
=-p r 2(1 cos Pa - - n r

(4.3)

+ pa a2(1 - A) + i1 cos 20
(ITA 2r 2

f •= a£ (1-2•a sin 20 (4.4)
.,1 + A r2 K1 "

which are identical to the forms obtained by [2].*

4.2. Infinite Plane with a Crack under Simple Uniform Tension
(Fi@.g 6)

Solution to this problem can be obtained from the solu-

tion of the elliptical hole problem by taking •o÷0, as

desc,-ibed in Appendix III-(b). The results in (AIII.19) show

that in this crack problem the couple-stress effect vanishes.

Furthermore, (AIII.19) shows that the solutions obtained here

are identical to the corresponding classical solutions which

can also be obtained by proceeding by the sami. limiting process

in [8]. Since couple-stresses are related to curvature and no

curvature is induced in this crack problem, it is clear that

There is a misprint for the expression of E in Equation
(38) in [2]. The correct form is E =(-pakF)/(l + F)KI1(a/k).
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couple-stress solutions should be the same as classical

solutions.

p

I

i • c- c

E, V

!. [ *oO, a_)c

b-o, e-l

Figure 6.

4.3. Classical Solution with Free Stresses on C =o (Fig. 7)

As k - 0, couple-stress solutions of the problem in

Fig. 1 obtained in Section 3.0 reduce to classical solutions

of the problem in Fig. 7. The results in Equation (AIV.9) are

identical to the forms obtained in [8].*

See Equations (6.2481), (6.2494), and (6.2495) on
pp. 543-544 of [81.
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- - - - - - - - -

I free
stresse 0

0
f

2. -�"o

Figure 7.
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5.0 DISCUSSION AND CONCLUSION

The solutions to this problem are given either as stress

and couple-stress functions in (3.6) and (3.7) or as stresses

and couple-stresses in (3.16) through (3.21), together with

the seven determined coefficients in (3.24), (3.25), (3.26),

(3.32), (3.34), (3.46), and (3.47). All series in (3.32),

(3.24), (3.46), and (3.47) are shown to be convergent in

Appendix IV. Special cases of the solutions are also obtained

by the proper limiting process as discussed in Section 4.0.

The three limiting cases are: (4.3) and (4.4) for the degen-

erate circle in Fig. 5, (AIII.19) for the degenerate crack in

Fig. 6, and (AIV.9) for the classical solution in Fig. 7.

The result obtained is a subclass of solutions to the

general self-equilibrated boundary-value problems. The selec-

tion of the Mathieus' functions and the form of weighting

functions in the boundary conditions (2.20), (2.21), and

(2.22) match a particular class of boundary-values, which

gratifyingly does reduce upon limiting processes to various

classical solutions (Figs. 6 and 7, and Fig. 5 for k = 0).

Here we summarize some important results about the

three limiting cases. The solutions for the degenerate circle

in (4.3) and (4.4) are shown to be identical to the results in

[2]. The solutions for the degenerate crack in (AIII.19) are

seen to be the same as those obtained in [8], by proceeding

according to the same limiting process. Since coudle-stresses

are related to curvature and no curvature is induced in this

crack problem, it is clear that couple-stress solutions in

39
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(AIII.19) should be the same as the classical solutions in [8).

The classical solutions for the general elliptical hole prob-

lem (Fig. 7) in (AIV.9) are obtained by taking I - 0 from (3.6)

and (3.7) and they are identical to the results in [8].

I
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APPENDIX I

Solution of a Two-dimensional Wave Equation in Elliptical
Coordinates

The two-dimensional wave equation

T- t 22V 2Y= 0

can be expressed in elliptical coordinates F and n by using

(2.12) as

-+ 2q (cosh2E - cos2nlY 0 (A1.1)
•2 an 2

Using the method of separation of variables and the form of

S solution of (AI.I) as T(E,rl) = Tl()rln), (AI.I) is reduced to

the following two ordinary differential equations known as

Mathieu' s equations.

d2'
d - (d + 2q cosh2&)¶ = 0 (AI.2)

d2d + (d + 2q cos2q)o 0 (AI.3)
(di

Here d is the separation constant.

From the solutions of (AI.2), we choose the following

one

See Section 8.30 on p. 165 and Section 13.30 [Equation
(5) on p. 248] in Reference [9].
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Fek2 -q) A(2)r I (V )K (V) (AI.4)2 LA,-) 2r r 1 r 2
0 r=O

From the solutions of (AI.3), we select, for the current

problem,

se (1-,-q) E (_,)rrB"(2) sin (2r + 2)n (AI.5)
r=O ?r+2

However, another Mathieu function ot (AI.3)

ce r,-q) A( 2 ) cos2rn (AI.6)e2(rq =-• {I 2r
r=O

will be used in the text for evaluation of integrals.

Derivatives of se 2 (h,-q), Fek 2 (E,-q)

Since the series expressed in (AIA4) and (AI.5) are

uniformly convergent** for real E and n, respectively, they

may be differentiated term by term.

k (p2 )'k [e(ir r 2

[e2(•-) ff (2) L A(22r (rl) r(V20A r=0 2

(AI.7)

31 rI(VI)
e r (v2 )]

See Section 2.18 on p. 21 in Reference [9].
S~**

See Sections 3.21 and 3.22 (on pp. 37-38) and Section
"13.60 on p. 257 in Reference [9].
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[se2(n,-q)] = (-1)r (2r + 2)B(2 ) cos(2r + 2)r (AI.8)
an 2r-- 2r+ 2

a2  r 2 (2B sin(2r+ 2)r (AI.9,
a- -s (,q y (-1]) (2 (2)

an -f[e2r 0U )B2+ in(r+2oA.9
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S- . -r•..rn ; -r - ..-. = .c•^• c~. -r .- • , - -• - - - -.

APPENDIX II

Integrals Quoted from Reference [10]

r2w se sin2nrdn = 1-11n+Ir%(2) (n >2 1 (AII.I)

JO 2i2
0f 2w nA (2)

A e i0ntgndn (AI) to (n > (AII 3)

b(sec [ t m t itAII.4)!2!0

More Intearals Established

All the integrands in (AII.5) through (AII.9) can be

iishown to be convergent absolutely and ,"niformly for all real

***,

nby using Reference [ill,*, hence term-by.-term integration

[ ~can be applied to all of them (Refe:rence i]) By direct

Sintegrati-on,¶ the following results are obtained.

,See Equations (20.5.3) and (20.5.4) on p. 732.

See Theorem on p. 146.
S±See "Weierstrass's test" on p. 345.

! •See Theorem 3 on p. 341.

¶See Section 5 Dn p. 384 in Reference [9].
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"-2w1 2

ir [se2n+2 (n,-q)] cos2 pqdn =n

y_ B1(2 n+2)B (2n+2)
r-O 2r+2 2p-2r-2

o (T n) ( 2 n+2)
T- B2r+2 B2p+2r+2 (p is odd, > 1) (AII.5)

(p-4)

( (- 1 2n+2)12 2 B B(2n+2)+21 +•Bp F r_ q 2 r +2 ,2p-2r-2

22

" -- +(2n+2) (2n+2)+ 2r+2 2p+2r+2 (p is even, > 2)
.• ~r=0 -

[sen (n,-ql][Sen (n,-ql] sin2 pndn

(AII. 6)p_(2n+2) _(2n+2)
(-I)P P 2r+2 U2p+2r+2 (P>i

f2n

S0 Se2n+2 (-52n+2
c 2

•. •- , _(2n+2)= -Z_ 2r+2)BU2r+2
t r=0

j se / n,- "s (n,-q) cos2pndq
S•7 Se2n+2" ,-)S2n+2

S' (AII. 7)
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1--(p-3)

- (2p - 2r- 3)2 B( 2 n+2) B(2n+2)
r=O -22r+2 2p-2r-2 (AII. 7)

(2p + 2r + 1 B(2n+2 ) (2n+2)"+ 2r+2 2p+2r+2 (p is odd,> 1)r=0

(p-4)I (B2n+2) 2 2r 2•2)(n2
- pB p + (2p - 2r - 3)2 B (2n+2)2 pr=0 2r+2 O2p-2r-2

- ~ (2p+ 2r + 1)B2 n+21 B12 n+21
UP + 2r + 1) B2r+2 B2p+2r+2 (p is even, > 2)

r r=0

2! ce (in,-q) se (n,-q) sin2pndi =7f 2n+2 2n+2

': (AIT.8)

A (2n+2) B ( 2n+2) A (2n+2) B (2 n+2 ) (r 2r+2p 2r+2 2r+2 2r+2p Pr=0 r=0 -

r Ce2 n+2 (TI,-q) sen 2 (,n,-q)dn =
Io j 0(2n+2) (n+2)

E (2r + 2) A(2n+2) B2+2
r=O 2r+2 2r+2

2 ce 2n+2 (n,-q)sen+2 (n,-q) cos2 pndn =

1(p-S•- p •(2n+2) D(2n+2)+.(-li)P (2r + 2) A 2p-2r B(2r+2
r=0 2p-2r-2 2r+2

(AII.9)
+ o (o )P (2r + 2) A B( 2 n+2) (p is odd, > 1)

2p+2r+2 2r+2r=O -
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i(p-2)
P(2n+2) (2n+2) +(-i)p (2r + 2) A2p-2r-2 B2r+2

1-00
S(2n+2) n(2n+2) ( see,>"

(-i)p (2r + 2) p+2r+2 2r+2 (p is even,
r=O
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APPENDIX III

Let r and r' represent the semi-major axis and the semi-

minor axis, respectively, for any confocal ellipse. By using

(2.8) r,r' can be expressed in terms of c and

r = x = ±c coshý, at n = O,r, y = 0

(AIII.I)T 3
r' = y = ±c sinh, at n = [, ,x 0

By definition

c = re (AIII.2)

From (AIII.l) and (AIII.2), we have

-1
coshý = e (AIII.3)

Some Useful Limiting Forms When the Ellipse Tends to a Circle

with e - 0

For fixed r, as e - 0, the confocal ellipse of the

semi-major axis r, tends to a circle with r as radius, and the

confocal hyperbolas become radii of the circle, with q =

(see Figure 3(b)). By use of (AITI.2) and (AIII.3), it is

clear that e - 0 co•,,, isponds to c - 0 and • + •. Since

q/2 k •or k 0 as c - 0. By means of these

equivalent limitir3 ,lrocesses, we obtain the following*

1 cein tnlim(1 ) r (n = 1,2,3) (AIII.4)
e-0

See Appendix I on p. 367-370 ir Reference [9].
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r

Ji 1T Fek I a [K (AIII.5)

(-[p2 j 2) = r dLi AII

lim(se2 ) = sin24 (AIII.7)
e÷O

lim(ce 2) = cos2o (AIII.8)
e-0

For the specific ellipse of the semi-major axis a with • =

(AIII.7) and (AIII.8) still hold while (AIII.4) through

(AIII.6) take the following forms.

lim 1 = a (n = 1,2,3,...) (AIII.9)

lim (Fek 2 ) 1 =2 (AIII.l0)
e÷O L 2" =O

k2 a= r .LK Z AII\1

lim (Fek 01 = rK 2 li (AIII. ii)
e-÷O [(2r=a

Some Useful Limiting Forms When the Ellipse Tends to a Crack
with e -÷ 1 or 0.

The ellipse with the semi-major axis, a = c cosh ' , and

00, the semi-minor a4.'s, b = c sinh~o, tends to the inter-focal

line of length 2c, when e 1 1, while a - c, b -÷ 0 (Figure 3(b)).

By use of (AIII.3) with • = o e - 1 is seen to be equivalent
0

to 0. The following useful limiting quantities are

obtained by direct computation.
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lim e = 1 (n 1.2,3,...) (AIII.12)
-o0

irm[sinh2Eo = 0
o+0 0

(AIII.13)

lim[cosh2E 0
] = 1

lim0(Fek 2) I = Fek 2 (0,-q) (AIII.14)

m2 2"lim (Fek os Fek20-q)= (AIII.15)

e00

Limiting Values of Solutions as e + 0

By means of the forms in (AIII.) through (AIII.1), tie

limiting values of the modified forms of Ui(= 1,2,... ,5) in

(3.1) and the modified forms of TiT2 in (3.4) and (3.5) are

obtained as follows

lim[c 2 Ul] 4r 2

e+0

lim[U2] = cos24
e-0

Slim = • cos0Se÷0L~c 2 4r2

1 1m[U4 = n r (AIII.16)

;• lim~c2U5= 4r2 cos2ý
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[2Vf1 1
lim 2 sin2o

e-1-0c 2] r2

lim[ K V2 = sin2o

e-0 L (P2)r 2

By use of the forms in (AIII.4) through (AIII.ll), the limit-

ing values of D in (3.26), B in (3.32), c 2 C in (3.46), F in

(3.47), in (3.35), and M in (3.34) are obtained as

follows.

2
lim [D] = -Pa 2e÷0O

S~4
2C3 pa (- A)

eid0 = (1 + A)

lim[F] = 4(1 - v)a 2.e÷O (i + "

2
lim[B] + (AIII.17)lim[B 2(1 + A)

A, lim|--•.= = rTr A

e÷0 c (P2) 16a£(I - v)K 1 a

C2 D is obtained by multiplying (3.46) by c 2 .

F is obtained by multiplying (3.47) by c 2 /2.

tb, g, M, n, s, and t in (3.46) are expressed in (3.38),

(3.39), (3.40), (3.43), (3.44), and (3.45), respectively.
/c2 is obtained by dividing (3.35) by c

M is obtained by multiplying (3.34) by (p 2 ) '/'.
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lim[M] = pa£A

e÷O ( + V)K1 a

where

8(1- v)

a +2a

4~~ 2
K1"

Since, from (3.24) and (3.25), we have H/c = - 2/c = p/16

which is a constant, the following limiting processes are

obvious.

"lim H =
e-0 c

(AIII.18)
Jim E P
e-0 c 2 1

Limiting Values of Solutions as Co 0

By means of the forms in (AIII.12) through (AIII.15),

the limiting values of H in (3.24), B in (3.32), C in (3.46),

D in (3.26), E in (3.25), F in (3.47), and M in (3.34) can be

obtained as follows.

2lim H =lim B = c

16o-0 •o0

2lim C =lim E =-Pc2

16

(AIII.1)
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lir D= 0-1÷0
0

lim F= lim M= 0

0 *0

I

53



APPENDIX IV

Some Useful Limiting Forms as I P

Since a1/2=1c = k, for fixed c, - 0 implies that

q or k ÷. The following limiting quani. ties are

obtained by using [9] .*

A(2)

lim -2r 2(_l) r (r = 1,2,3,...) (AIV..I)
9--0 AM2

)0

(2)
l'iB 2r+2 r (_~ (r + i) (r = ,,,.) (AIV.2)

•: £÷0 B 2)

lim A(2) = 0 (r = 0,1,2,3,.) (AIV.3)
£÷0O 2r

lim B (2) = 0 (r = 1,2,3,...) (AIV.4)
2r

B (2) A (2)

lr 2 -= lim 1 (AIV. 5)
k0 A (2) Z-0 B (2)

0 2

**
For l.arge arguments, z, we have

z
In(Z) e I'(z) (AIV. 6)n /2T-- n

-z
K n(z) e - -K' (z) (AIV.7)n n

See Section 3.34 on p. 47.
**See Equations (9.7.1) to (9.7.4) on pp. 377-378 in [9].
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Substituting (AIII.6) and (AIII.7) into (AI.4) and (AI.7) for

the large value of q (small value of L), and taking the limit

of the resulting form with t - 0, we obtain

[Fek 2 ] C=&o sinho

limr - (AIV. 8)
1-0 [Fek2 i=t 2

All the series forms in expression g in (3.39) and s in (3.44)

can be shown to be absolutely and uniformly convergent. As

such, by use of [111, (AIV.3) and (AIV.4), all these series

tend to be zero as 1 ÷ 0. Based upon this argument and

(AIV.8), it is seen that in g/B• 2 ) and s/A terms contain-
(AIV8,, 2  0 em cnan

ing L as denominators dominate for the small value of Z.

Hence, other terms in g/B(2) and s/A(2) can be neglected as

compared with terms havinq Z as denominators, for . - 0.

Limiting Values of Solutions Like £ - 0

By use of (AIV.l) through (AIV.8), the limiting value

of H in (3.24), B in (3.32), C in (3.46), D in (3.26), E in

(3.25), F in (3.47), and M in (3.34) can be obtained as

follows.

lim [HI 1 PC2
PC

1 2
Y lim [b] -1 PC2e0 1

Z-0
=Tp 2e

See Section 3.22 on p. 38 in [9].
**

See Theorem 2 on pp. 339-3,0.
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